
4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 1/11

Errors And Signals And Traps (Oh,
My!) - Part 2
Errors are not the only way that a script can terminate unexpectedly. You also have
to be concerned with signals. Consider the following program:

#!/bin/bash

echo "this script will endlessly loop until you stop it"
while true; do
 : # Do nothing
done

After you launch this script it will appear to hang. Actually, like most programs that
appear to hang, it is really stuck inside a loop. In this case, it is waiting for the true
command to return a non-zero exit status, which it never does. Once started, the
script will continue until bash receives a signal that will stop it. You can send such a

Validation failed. Please retry or wait till
W3C allows validation again

X

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 2/11

script will continue until bash receives a signal that will stop it. You can send such a
signal by typing Ctrl-c which is the signal called SIGINT (short for SIGnal INTerrupt).

Cleaning Up After Yourself
Okay, so a signal can come along and make your script terminate. Why does it
matter? Well, in many cases it doesn't matter and you can ignore signals, but in
some cases it will matter.

Let's take a look at another script:

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE
fi

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 3/11

This script processes a text file specified on the command line with the pr
command and stores the result in a temporary file. Next, it asks the user if they want
to print the file. If the user types "y", then the temporary file is passed to the lpr
program for printing (you may substitute less for lpr if you don't actually have a
printer attached to your system.)

Now, I admit this script has a lot of design problems. While it needs a file name
passed on the command line, it doesn't check that it got one, and it doesn't check
that the file actually exists. But the problem I want to focus on here is the fact that
when the script terminates, it leaves behind the temporary file.

Good practice would dictate that we delete the temporary file $TEMP_FILE when
the script terminates. This is easily accomplished by adding the following to the end
of the script:

rm $TEMP_FILE

This would seem to solve the problem, but what happens if the user types ctrl-c
when the "Print file? [y/n]:" prompt appears? The script will terminate at the read
command and the rm command is never executed. Clearly, we need a way to
respond to signals such as SIGINT when the Ctrl-c key is typed.

Fortunately, bash provides a method to perform commands if and when signals are
received.

http://linuxcommand.org/man_pages/lpr1.html
http://linuxcommand.org/man_pages/pr1.html

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 4/11

trap
The trap command allows you to execute a command when a signal is received by
your script. It works like this:

trap arg signals

"signals" is a list of signals to intercept and "arg" is a command to execute when one
of the signals is received. For our printing script, we might handle the signal problem
this way:

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

trap "rm $TEMP_FILE; exit" SIGHUP SIGINT SIGTERM

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 5/11

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE
fi
rm $TEMP_FILE

Here we have added a trap command that will execute "rm $TEMP_FILE" if any
of the listed signals is received. The three signals listed are the most common ones
that you will encounter, but there are many more that can be specified. For a
complete list, type "trap -l". In addition to listing the signals by name, you may
alternately specify them by number.

Signal 9 From Outer Space
There is one signal that you cannot trap: SIGKILL or signal 9. The kernel
immediately terminates any process sent this signal and no signal handling is
performed. Since it will always terminate a program that is stuck, hung, or
otherwise screwed up, it is tempting to think that it's the easy way out when
you have to get something to stop and go away. Often you will see references
to the following command which sends the SIGKILL signal:

kill -9

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 6/11

However, despite its apparent ease, you must remember that when you send
this signal, no processing is done by the application. Often this is OK, but with
many programs it's not. In particular, many complex programs (and some not-
so-complex) create lock files to prevent multiple copies of the program from
running at the same time. When a program that uses a lock file is sent a
SIGKILL, it doesn't get the chance to remove the lock file when it terminates.
The presence of the lock file will prevent the program from restarting until the
lock file is manually removed.

Be warned. Use SIGKILL as a last resort.

A clean_up Function
While the trap command has solved the problem, we can see that it has some
limitations. Most importantly, it will only accept a single string containing the
command to be performed when the signal is received. You could get clever and
use ";" and put multiple commands in the string to get more complex behavior, but
frankly, it's ugly. A better way would be to create a function that is called when you
want to perform any actions at the end of your script. In my scripts, I call this
function clean_up.

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 7/11

#!/bin/bash

Program to print a text file with headers and footers

TEMP_FILE=/tmp/printfile.txt

clean_up() {

 # Perform program exit housekeeping
 rm $TEMP_FILE
 exit
}

trap clean_up SIGHUP SIGINT SIGTERM

pr $1 > $TEMP_FILE

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE
fi
clean_up

The use of a clean up function is a good idea for your error handling routines too.
After all, when your program terminates (for whatever reason), you should clean up
after yourself. Here is finished version of our program with improved error and signal

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 8/11

after yourself. Here is finished version of our program with improved error and signal
handling:

#!/bin/bash

Program to print a text file with headers and footers

Usage: printfile file

Create a temporary file name that gives preference
to the user's local tmp directory and has a name
that is resistant to "temp race attacks"

if [-d "~/tmp"]; then
 TEMP_DIR=~/tmp
else
 TEMP_DIR=/tmp
fi
TEMP_FILE=$TEMP_DIR/printfile.$$.$RANDOM
PROGNAME=$(basename $0)

usage() {

 # Display usage message on standard error
 echo "Usage: $PROGNAME file" 1>&2
}

clean_up() {

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 9/11

clean_up() {

 # Perform program exit housekeeping
 # Optionally accepts an exit status
 rm -f $TEMP_FILE
 exit $1
}

error_exit() {

 # Display error message and exit
 echo "${PROGNAME}: ${1:-"Unknown Error"}" 1>&2
 clean_up 1
}

trap clean_up SIGHUP SIGINT SIGTERM

if [$# != "1"]; then
 usage
 error_exit "one file to print must be specified"
fi
if [! -f "$1"]; then
 error_exit "file $1 cannot be read"
fi

pr $1 > $TEMP_FILE || error_exit "cannot format file"

echo -n "Print file? [y/n]: "
read
if ["$REPLY" = "y"]; then

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 10/11

if ["$REPLY" = "y"]; then
 lpr $TEMP_FILE || error_exit "cannot print file"
fi
clean_up

Creating Safe Temporary Files
In the program above, there a number of steps taken to help secure the temporary
file used by this script. It is a Unix tradition to use a directory called /tmp to place
temporary files used by programs. Everyone may write files into this directory. This
naturally leads to some security concerns. If possible, avoid writing files in the /tmp
directory. The preferred technique is to write them in a local directory such as
~/tmp (a tmp subdirectory in the user's home directory.) If you must write files in
/tmp, you must take steps to make sure the file names are not predictable.
Predictable file names allow an attacker to create symbolic links to other files that
the attacker wants you to overwrite.

A good file name will help you figure out what wrote the file, but will not be entirely
predictable. In the script above, the following line of code created the temporary file
$TEMP_FILE:

TEMP_FILE=$TEMP_DIR/printfile.$$.$RANDOM

4/2/2015 Writing shell scripts - Lesson 15: Errors and Signals and Traps (Oh, My!) - Part 2

http://linuxcommand.org/lc3_wss0150.php 11/11

The $TEMP_DIR variable contains either /tmp or ~/tmp depending on the
availability of the directory. It is common practice to embed the name of the program
into the file name. We have done that with the string "printfile". Next, we use the $$
shell variable to embed the process id (pid) of the program. This further helps
identify what process is responsible for the file. Surprisingly, the process id alone is
not unpredictable enough to make the file safe, so we add the $RANDOM shell
variable to append a random number to the file name. With this technique, we
create a file name that is both easily identifiable and unpredictable.

There You Have It
This concludes the LinuxCommand.org tutorials. I sincerely hope you found them
both useful and enjoyable. If you did, continue your command line adventure by
downloading my book.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in
any medium, provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net
http://linuxcommand.org/tlcl.php

